翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ice core : ウィキペディア英語版
ice core

An ice core is a core sample that is typically removed from an ice sheet, most commonly from the polar ice caps of Antarctica, Greenland or from high mountain glaciers elsewhere. As the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper, and an ice core contains ice formed over a range of years. The properties of the ice and the recrystallized inclusions within the ice can then be used to reconstruct a climatic record over the age range of the core, normally through isotopic analysis. This enables the reconstruction of local temperature records and the history of atmospheric composition.〔British Antarctic Survey, (The ice man cometh - ice cores reveal past climates )〕
Ice cores contain an abundance of information about climate. Inclusions in the snow of each year remain in the ice, such as wind-blown dust, ash, pollen, bubbles of atmospheric gas and radioactive substances. The variety of climatic proxies is greater than in any other natural recorder of climate, such as tree rings or sediment layers. These include (proxies for) temperature, ocean volume, precipitation, chemistry and gas composition of the lower atmosphere, volcanic eruptions, solar variability, sea-surface productivity, desert extent and forest fires.
The length of the record depends on the depth of the ice core and varies from a few years up to 800 kyr (800,000 years) for the EPICA core. The time resolution (i.e. the shortest time period which can be accurately distinguished) depends on the amount of annual snowfall, and reduces with depth as the ice compacts under the weight of layers accumulating on top of it. Upper layers of ice in a core correspond to a single year or sometimes a single season. Deeper into the ice the layers thin and annual layers become indistinguishable.
An ice core from the right site can be used to reconstruct an uninterrupted and detailed climate record extending over hundreds of thousands of years, providing information on a wide variety of aspects of climate at each point in time. It is the simultaneity of these properties recorded in the ice that makes ice cores such a powerful tool in paleoclimate research.
== Structure of ice sheets and cores ==

Ice sheets are formed from snow. Because an ice sheet survives summer, the temperature in that location usually does not warm much above freezing. In many locations in Antarctica the air temperature is always well below the freezing point of water. If the summer temperatures do get above freezing, any ice core record will be severely degraded or completely useless, since meltwater will percolate into the snow.
The surface layer is snow in various forms, with air gaps between snowflakes. As snow continues to accumulate, the buried snow is compressed and forms ''firn'', a grainy material with a texture similar to granulated sugar. Air gaps remain, and some circulation of air continues. As snow accumulates above, the firn continues to densify, and at some point the pores close off and the air is trapped. Because the air continues to circulate until then, the ice age and the age of the gas enclosed are not the same, and may differ by hundreds of years. The gas age–ice age difference is as great as 7 kyr in glacial ice from Vostok.
Under increasing pressure, at some depth the firn is compressed into ice. This depth may range between a few to several tens of meters to typically 100 m for Antarctic cores. Below this level material is frozen in the ice. Ice may appear clear or blue.
Layers can be visually distinguished in firn and in ice to significant depths. In a location on the summit of an ice sheet where there is little flow, accumulation tends to move down and away, creating layers with minimal disturbance. In a location where underlying ice is flowing, deeper layers may have increasingly different characteristics and distortion. Drill cores near bedrock often are challenging to analyze due to distorted flow patterns and composition likely to include materials from the underlying surface.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ice core」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.